
鲍杰
生物化工专业:博士生导师/硕士生导师
生物工程专业:博士生导师/硕士生导师
生物与医药专业(生物工程领域):博士生导师/硕士生导师
工学博士,教授、博士生导师。南京理工大学获学士学位、浙江大学获硕士学位、日本国立山口大学获博士学位。先后在中石化、日本冈山大学、美国加州大学戴维斯分校从事研究工作。2006年至今任职华东理工大学生物工程学院和生物反应器工程国家重点实验室。作为课题负责人主持了973、863、国家自然科学基金课题,以及中石油等工业应用课题数十项。现任SCI期刊Applied Biochemistry and Biotechnology高级编辑、Bioprocess and Biosystems Engineering副主编、ACS Sustainable Chemistry and Engineering编委、Springer和Elsevier学术期刊客座编辑,亚洲生物技术联合会生物能源与生物炼制分会理事。
研究领域聚焦于木质纤维素生物炼制和生物能源方向的应用基础研究。提出了木质纤维素类淀粉化干法生物炼制技术,在液体燃料和生物基化学品生产上显示了巨大的技术优势和环境友好性,奠定了以木质纤维素替代粮食和石油资源的可持续生物与化学工业的技术基础;对一系列生物炼制工业发酵菌株的代谢工程改造,成倍提高了生物催化和发酵效率,达到了迄今国内外最高水平的生物炼制转化、能耗和排放指标;独特的生物脱毒菌株和代谢机制的发现,极大提高了生物炼制过程效率和环境质量,实现了抑制物脱毒关键瓶颈的突破;提出了基于严格热力学和流变学基础上的生物炼制流程模拟和计算流体力学模型,实施了多项面向产业化规模的工艺包设计和工业应用。
研究方向:
1. 生物燃料和生物聚合物合成:以纤维素生物质为原料的油脂微生物进化、改造与生产;聚羟基烷基酸酯(PHA)和聚乳酸(PLA)生物合成与代谢工程改造;长链烷烃微生物的代谢工程和合成生物学改造;
2. 超级生物炼制微生物:极端低pH生物脱毒微生物的发现、进化、合成生物学基因元件库;全糖协同转化发酵乙醇、手性乳酸、氨基酸等产品的代谢工程和合成生物学研究;微生物的生物炼制适应性进化和机制解析。
3. 生物炼制过程工程:木质纤维素先进预处理、生物脱毒、高固含量酶促糖化,以及木质纤维素来源全糖共发酵生产液体低碳醇、有机酸、氨基酸、长链烃的生物炼制过程工程研究;Aspen Plus流程模拟/计算流体力学研究。
主持的科研项目或基金:
国家自然科学基金重点/面上项目:木质纤维素生产手性乳酸的生物合成路径与抗逆机制研究(31961133006)、木质纤维素水解液体系中最轻油脂酵母细胞的全通量精准筛选(21978083)、复杂酶反应体系的抑制效应解析与关键路径的加速(20976051)、DNA扩增前提材料的生物合成与过程集成研究(20676037)
973/863/重点研发计划项目:木质纤维素降解转化过程强化的工程学原理与方法(2011CB707406)、农作物秸秆制备生物化工醇产业化示范(2014AA021901)、极限低水稀酸预处理技术体系研究(2012AA022301)、低成本乳酸、丙交酯和聚乳酸制备关键技术及产业化研究(2017YFB0309302)
教育部/上海市项目:高效利用生物质来源戊糖的产乙醇基因工程菌的代谢工程研究(107123)、DNA生物合成与扩增反应中关键前体材料的生物合成过程技术(06PJ14022)
工业应用项目:农作物秸秆酶促制糖技术开发与产业化应用(CXTY20110918)、节能与清洁型木质纤维素生产燃料乙醇过程的关键技术研究(HTB207-00005)
教学:
1. 本科生必修课:生物工程过程设计,32学时;
2. 硕士生专业课:生物能源过程工程(全英文)(Biomass Processing Engineering),32学时;
3. 博士生专业课:生物工程进展 (Advances in Biochemical Engineering/ Biotechnology),32学时。
代表性论文(*通讯作者):
1. Ci Jin, Zhen Huang, Jie Bao*. High-titer glutamic acid production from lignocellulose using an engineered Corynebacterium glutamicum with simultaneous coutilization of xylose and glucose. ACS Sustainable Chemistry & Engineering, 2020, 8:6315-6322.
2. Zhongyang Qiu, Chun Fang, Qiuqiang Gao, Jie Bao*. A short-chain dehydrogenase plays a key role in cellulosic D-lactic acid fermentability of Pediococcus acidilactici. Bioresource Technology, 2020, 297:122473.
3. Niling He, Chun Fang, Zhongyang Qiu, Jie Bao*. Increasing sodium lactate production by enhancement of Na+ transmembrane transportation in Pediococcus acidilactici. Bioresource Technology, 2020, 323:124562.
4. Lixiang Zheng, Xushen Han, Tao Han, Gang Liu, Jie Bao*. Formulating a fully converged biorefining chain with zero wastewater generation by recycling stillage liquid to dry acid pretreatment operation. Bioresource Technology, 2020, 318:124077.
5. Zhao Yan, Xiaochuang Gao, Qiuqiang Gao, Jie Bao*. Mechanism of tolerance to the lignin-derived inhibitor p-benzoquinone and metabolic modification of biorefinery fermentation strains. Applied & Environmental Microbiology 2019, 85:e01443-19.
6. Pingping Zhou1, Ruimiao Yao1, Hongsen Zhang, Jie Bao*. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Biotechnology and Bioengineering, 2019, 116:2191-2199.
7. Xia Yi, Qiuqiang Gao, Lei Zhang, Xia Wang, Yanqing He, Fengxian Hu, Jian Zhang, Gen Zou, Shihui Yang, Zhihua Zhou*, Jie Bao*. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnology for Biofuels, 2019, 12:126.
8. Jingbai Wen, Jie Bao*. Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin rich corn stover hydrolysate. Biotechnology for Biofuels, 2019, 12:86.
9. Ci Jin, Weiliang Hou, Ruimiao Yao1, Pingping Zhou, Hongsen Zhang, Jie Bao*. Adaptive evolution of Gluconobacter oxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass. Bioresource Technology, 2019, 289:121623.
10. Xushen Han, Li Li, Chengxiang Wei, Jian Zhang, Jie Bao*. Rich vitamins B in lignocellulose biomass facilitates L-lactic acid fermentation. Journal of Agricultural and Food Chemistry, 2019, 67:7082-7086.
11. Gang Liu, Qiang Zhang, Hongxing Li, Abdul Sattar Qurishi, Jian Zhang, Xiaoming Bao*, Jie Bao*. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnology and Bioengineering, 2018, 115, 60-69.
12. Hanqi Gu, Ruixin An, Jie Bao*. Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis. Chemical Engineering Journal, 2018, 352:198-205.
13. Jingbai Wen, Yanqiu Xiao, Ting Liu, Qiuqiang Gao, Jie Bao*. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. Biotechnology for Biofuels, 2018, 11, 132.
14. Xushen Han, Jie Bao*. General method on correcting the fluctuation of acid based pretreatment efficiency of lignocellulose for highly efficient bioconversion. ACS Sustainable Chemistry & Engineering (IF 5.951) 2018, 6(3):4212-4219.
15. Xushen Han, Feng Hong, Gang Liu, Jie Bao*. An approach of utilizing water soluble carbohydrates in lignocellulose feedstock for promotion of cellulosic L-lactic acid production. Journal of Agricultural and Food Chemistry, 2018, 66:10225-10232.
16. Jian Zhang*, Cheng Lei, Gang Liu, Yanwen Bao, Venkatesh Balan*, Jie Bao*. In-situ vacuum distillation of ethanol helps to recycle cellulase and yeast during SSF of delignified corncob residues. ACS Sustainable Chemistry & Engineering, 2017, 5, 11676-11685.
17. Weiliang Hou, Lang Li, Jie Bao*. Oxygen transfer in high solids loading and highly viscous lignocellulose hydrolysates. ACS Sustainable Chemistry & Engineering, 2017, 5, 11395-11402.
18. Abdul Sattar Qureshi, Jian Zhang*, Leonardo da Costa Sousa*, Jie Bao*. An antibacterial peptide secreted by Pediococcus acidilactici enables efficient cellulosic open L-lactic acid fermentation. ACS Sustainable Chemistry & Engineering, 2017, 5, 9254-9262.
19. Ruimiao Yao, Weiliang Hou, Jie Bao*. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans.Bioresource Technology, 2017, 244: 1188-1192.
20. Gang Liu, Jie Bao*. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol. Bioresource Technology, 2017, 245: 18-26.
联系方式:
通讯地址:上海市梅陇路130号华东理工大学283信箱(200237)
实验室位置:华东理工大学徐汇校区实验十八楼1303室
实验室网页:http://sklbe.ecust.edu.cn/biomasslab
电话/传真:021-64251799
Email:jbao@ecust.edu.cn